Numerical Investigation on Convergence Rate of Singular Boundary Method

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convergence of product integration method applied for numerical solution of linear weakly singular Volterra systems

We develop and apply the product integration method to a large class of linear weakly singular Volterra systems. We show that under certain sufficient conditions this method converges. Numerical implementation of the method is illustrated by a benchmark problem originated from heat conduction.

متن کامل

CAS WAVELET METHOD FOR THE NUMERICAL SOLUTION OF BOUNDARY INTEGRAL EQUATIONS WITH LOGARITHMIC SINGULAR KERNELS

In this paper, we present a computational method for solving boundary integral equations with loga-rithmic singular kernels which occur as reformulations of a boundary value problem for the Laplacian equation. Themethod is based on the use of the Galerkin method with CAS wavelets constructed on the unit interval as basis.This approach utilizes the non-uniform Gauss-Legendre quadrature rule for ...

متن کامل

NUMERICAL INVESTIGATION OF MESH SIZE CONVERGENCE RATE OF THE FINITE ELEMENT METHOD IN MESFET SIMULATIONt

The mesh size convergence rate of the finite element method in two-dimensional GaAs MESFET simulation has been investigated numerically. The equations governing MESFET operation and the finite element formulation of these equations are summarized. The presence of corner singularities at the gate contact endpoints is noteworthy. for such singularities are known to determine the convergence rate ...

متن کامل

Projection Method I : Convergence and Numerical Boundary Layers

This is the first of a series of papers on the subject of projection methods for viscous incompressible flow calculations. The purpose of these papers is to provide a thorough understanding of the numerical phenomena involved in the projection methods, particularly when boundaries are present, and point to ways of designing more efficient, robust and accurate numerical methods based on the prim...

متن کامل

Numerical investigation on convergence of boundary knot method in the analysis of homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems

This paper concerns a numerical study of convergence properties of the boundary knot method (BKM) applied to the solution of 2D and 3D homogeneous Helmholtz, modified Helmholtz, and convection-diffusion problems. The BKM is a new boundary-type, meshfree radial function basis collocation technique. The method differentiates from the method of fundamental solutions (MFS) in that it does not need ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems in Engineering

سال: 2016

ISSN: 1024-123X,1563-5147

DOI: 10.1155/2016/3564632